10篇代表性论文:
1. He, Z.G., Zhang, L.*, Ge, Y.P., Li, S.F., 2024. Numerical modeling of wrinkling modulation in tensegrity-membrane structures. International Journal of Solids and Structures. 301, 112963.
2. Ge, Y.P., He, Z.G., Li, S.F., Zhang, L.*, Shi, L.T., 2023. A machine learning-based probabilistic computational framework for uncertainty quantification of actuation of clustered tensegrity structures. Computational Mechanics. 72(3), 431-450.
3. Lu, M.K., Zhang, L.*, Chen, X.J., Vershinin, A., 2023. A unified variational framework of no-tension and no-compression solids and its application to finite element analysis. International Journal of Solids and Structures. 275, 112298.
4. Zhang, L.*, Lu, M.K., Han, L.L., Cao, J.J., 2021. A model reduction method for nonlinear analysis of materials and structures with tension–compression asymmetric properties. Composite Structures. 262, 113613.
5. Lu, M.K., Zheng, Y.G , Du, J.K., Zhang, L.*, Zhang, H.W., 2021. An adaptive multiscale finite element method for strain localization analysis with the Cosserat continuum theory. European Journal of Mechanics A-Solids. 92, 104450.
6. Lu, M.K., Zhang, L.*, Yan, Z., Wu, J., 2021. Nonlinear analysis of structures made of no-tension/compression materials using an efficient projection-contraction algorithm. Computers & Structures. 224, 106432.
7. Yan, Z., Zhang, L.*, Jin, W.W., 2020. Improved finite element method for inflated beams with local wrinkles. AIAA Journal. 60(7), 4278-4287.
8. Wu, J., Zhang, L.*, He, Z.G., Yan, Z., 2020. Comparative analysis of two tensegrity grids considering slack and rupture of cables. AIAA Journal. 58(5), 2321-2329.
9. Lv, J., Zheng, M.H., Zhang, L.*, Song, C., Zhang, H.W., 2020. Geometrically nonlinear analysis of 3D fluid actuated cellular structures using extended multiscale finite element method. International Journal of Mechanics and Materials in Design. 16(3), 503-517.
10. Zhang, L.*, Dong, K.J., Lu, M.K., Zhang, H.W., 2020. A wrinkling model for pneumatic membranes and the complementarity computational framework. Computational Mechanics. 65(1), 119-134.