职称:教授 博士生导师 硕士生导师
入职时间:2007-07-01
所在单位:生物工程学院
学历:博士研究生毕业
[95] Wang RH, Zhao Y, Xue WJ, Xia YT, Liang GZ*. Novel antioxidant peptides from soybean protein by employing computational and experimental methods and their mechanisms of oxidative stress resistance, Journal of Molecular Structure, 2024, https://doi.org/10.1016/j.molstruc.2024.139284.
[94] Kuang XY, Deng ZF, Feng BW, He R, Chen L, Liang GZ*. The mechanism of epigallocatechin-3-gallate inhibiting the antigenicity of β-lactoglobulin under pH 6.2, 7.4 and 8.2: multi-spectroscopy and molecular simulation methods. International Journal of Biological Macromolecules, 2024, 268(1): 2024.131773.
[93] Yu YD#, Xia YT#, Liang GZ*. Exploring novel lead scaffolds for SGLT2 inhibitors: Insights from machine learning and molecular dynamics simulations. International Journal of Biological Macromolecules, 2024, 263(2): 130375.
[92] Xia YT, Yu YD, Zhao Y, Deng ZF, Zhang L*, Liang GZ*. Insight into the interaction mechanism of vitamin d against metabolic syndrome: a meta-analysis and in silico study. Foods, 2023, 12(21): 3973.
[91] Pu P#, Deng ZF#, Chen L, Yang H, Liang GZ*. Reducing antigenicity and improving antioxidant capacity of β-lactoglobulin through covalent interaction with six flavonoids. Foods, 2023, 12(15): 2913.
[90] Zhao Y, Xia YT, Yu YD, Liang GZ*. QSAR in natural non-peptidic food-related compounds: current status and future perspective. Trends in Food Science & Technology, 2023, 140: 104165.
[89] Deng ZF#, Xia YT#, Chen L, Zhao Y, Wang RH, Liang GZ*. Insight into covalent conjugates of β-lactoglobulin with rutin: characterizing allergenicity, digestibility, and antioxidant properties in vitro. Food Research International, 2023, 173(2): 113401.
[88] Li DD#, Li J#, Hu J, Tang MJ, Xiu P, Guo YC, Chen TN, Mu N, Wang LH, Zhang XH, Liang GZ*, Wang HB*, Fan CH*. Nanomechanical profiling of Aβ42 oligomer-induced biological changes in single hippocampus neurons. ACS Nano, 2023, 17(6): 5517-5527
[87] Nie XE, Qin D, Zhou XY, Duo HR, Hao YJ, Li B*, Liang GZ*. Clustering ensemble in scRNA-seq data analysis: methods, applications and challenges. Computers in Biology and Medicine, 2023, 159: 106939.
[86] Yu YD#, Xu SQ#, He R, Liang GZ*. Application of molecular simulation methods in food science: status and prospects. Journal of Agricultural and Food Chemistry, 2023, 71(6): 2684-2703.
[85] Qin DY, Jiao LN, Wang RH, Zhao Y, Hao YJ, Liang GZ*. Prediction of antioxidant peptides using a quantitative structure−activity relationship predictor (AnOxPP) based on bidirectional long short-term memory neural network and interpretable amino acid descriptors. Computers in Biology and Medicine, 2023, 154: 106591.
[84] Geng S, Yuan XY, Jiang X, Zhang RH, Ma HJ, Liang GZ*, Liu BG*. An investigation on Pickering nano-emulsions stabilized by dihydromyricetin/high-amylose corn starch composite particles: Preparation conditions and carrier properties. Current Research in Food Science. 2023, 6: 100458.
[83] Yu YD, Liang GZ*, Wang HB. Interaction mechanism of flavonoids and tartary buckwheat bran protein: A fluorescence spectroscopic and 3D-QSAR study. Food Research International, 2022, 160: 111669.
[82] Bo WC#, Yu YD#, He R, Qin DY, Zheng X, Wang Y, Ding BT, Liang GZ*. Insight into the structure–odor relationship of molecules: a computational study based on deep learning. Foods, 2022, 11(14): 2033.
[81] He Y, Bu LJ, Xie HD, Liang GZ*. Characteristics of antioxidant substances and identification of antioxidant peptides in duck embryo eggs. British Poultry Science, 2022, 63(6): 779-787.
[80] Chen L, Yang H, Jiao LN, Pu P, Zheng X, Liang GZ*. Experimental and computational studies on the mechanism of the β-lactoglobulin-derived peptide inhibiting the antigenicity of β-lactoglobulin. Food Chemistry, 2022, 393: 133333.
[79] Qin DY, Bo WC, Zheng X, Hao YJ, Li B*, Zheng J*, Liang GZ*. DFBP: A comprehensive database of food-derived bioactive peptides for peptidomics research. Bioinformatics, 2022, 38(12): 3275-3280.
[78] Peng YD, Bu LJ, Zhang XC, Ji ZM, Xie HD*, Liang GZ*. Identification and molecular mechanism of a tri-peptide inhibitor targeting iNOS from duck embryo protein hydrolysates by experimental and bioinformatics studies. Bioorganic Chemistry, 2022, 122: 105736.
[77] Wang Y, Qin DY, Jin L, Liang GZ*. Caffeoyl malic acid is a potential dual inhibitor targeting TNFα/IL-4 evaluated by a combination strategy of network analysis-deep learning-molecular simulations. Computers in Biology and Medicine, 2022, 145: 105410.
[76] Zha SF, Utomo YKS, Li Y, Liang GZ*, Liu WQ*. Mechanic-driven biodegradable polyglycolic acid/silk fibroin nanofibrous scaffolds containing deferoxamine accelerate diabetic wound healing. Pharmaceutics, 2022, 14(3): 601.
[75] Wang RH, Zheng X, Liang GZ*. Mechanism of five flavonoids inhibiting NtMGAM based on molecular simulations. Journal of the Chinese Chemical Society, 2022, 69(2): 239-248.
[74] Ding BT, Yu YD, Geng S, Liu BG, Hao YJ*, Liang GZ*. Computational methods for the interaction between cyclodextrins and natural compounds: technology, benefits, limitations, and trends. Journal of Agricultural and Food Chemistry, 2022, 70(8): 2466-2482.
[73] Bo WC, Qin DY, Zheng X, Wang Y, Ding BT, Li YH*, Liang GZ*. Prediction of bitterant and sweetener using structure-taste relationship models based on an artificial neural network. Food Research International, 2022, 153: 110974.
[72] Geng S, Li YB, Lv JL, Ma HJ, Liang GZ*, Liu BG*. Fabrication of food-grade pickering high internal phase emulsions (HIPEs) stabilized by a dihydromyricetin and lysozyme mixture. Food Chemistry, 2021, 373: 131576.
[71] Yu YD, Liang GZ*. Interaction mechanism of phenolic acids and zein: a spectrofluorometric and molecular dynamics investigation. Journal of Molecular Liquids, 2021, 348: 118032.
[70] Ru QW, Geng S, Chen CG, Liang GZ*, Liu BG*. Preparation and characterization of β-carotene nanoemulsions stabilized by complexes of tartary buckwheat bran protein and rutin. Journal of Food Processing Preservation, 2021, 15(11): e15961.
[69] Wang RH, Ding BT, Liang GZ*. Interaction poses, intermolecular forces, dynamic preferences between flavonoids and maltosyl-β-cyclodextrin. Journal of Molecular Liquids, 2021, 346: 117068.
[68] Bo WC, Chen L, Qin DY, Geng S, Li JQ, Mei H, Li B*, Liang GZ*. Application of quantitative structure-activity relationship to food-derived peptides: methods, situations, challenges and prospects. Trends in Food Science & Technology, 2021, 114: 176-188.
[67] Geng S, Liu XL, Ma HJ., Liu BG*, Liang GZ*. Multi-scale stabilization mechanism of Pickering emulsion gels based on dihydromyricetin/high-amylose corn starch composite particles. Food Chemistry, 2021, 355: 129660.
[66] Zheng X, Pu P, Ding BT, Bo WC, Qin DY, Liang GZ*. Identification of the functional food ingredients with antithrombotic properties via virtual screenand experimental studies. Food Chemistry, 2021, 362: 130237.
[65] Geng S, Jiang ZJ, Ma HJ, Pu P, Liu BG*, Liang GZ*. Fabrication and characterization of novel edible Pickering emulsion gels stabilized by dihydromyricetin. Food Chemistry, 2021, 343: 128486.
[64] Pu P, Zheng X, Jiao LN, Chen L, Yang H, Liang GZ*. Six flavonoids inhibit the antigenicity of β-lactoglobulin by noncovalent interactions: a spectroscopic and molecular docking study. Food Chemistry, 2021, 339: 128106.
[63] Geng S, Jiang ZJ, Ma HJ, Wang Y, Liu BG*, Liang GZ*. Interaction mechanism of flavonoids and bovine β-lactoglobulin: experimental and molecular modelling studies. Food Chemistry, 2020, 312: 126066.
[62] Wang Y, Lv YH, Jin L*, Liang GZ*. Revealing the mechanism of EGCG, genistein, rutin, quercetin, and silibinin against hiAPP aggregation via computational simulations. Interdisciplinary Sciences: Computational Life Sciences, 2020, 12(1): 59-68.
[61] Lv YH, Wang Y, Zheng X, Liang GZ*. Reveal the interaction mechanism of five old drugs targeting VEGFR2 through computational simulations. Journal of Molecular Graphics and Modelling, 2020, 96: 107538.
[60] Li DD, Yang ZB, Fu AL, Chen TN, Chen LG, Tang MJ, Hua ZH, Mu N, Wang S, Liang GZ*, Wang HB*, Detecting melanoma with a terahertz spectroscopy imaging technique. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 234: 118229.
[59] He Y, Bu LJ, Xie HD, Liang GZ*. Antioxidant activities and protective effects of duck embryo peptides against H2O2-induced oxidative damage in HepG2 cells. Poultry Science, 2019, 98(12): 7118-7128.
[58] Li JQ, Geng S, Wang Y, Lv YH, Wang HB, Liu BG, Liang GZ*. The interaction mechanism of oligopeptides containing aromatic rings with β-cyclodextrin and its derivatives. Food Chemistry, 2019, 286: 441-448.
[57] Chen YS, Liu JW, Geng S, Liu YL, Ma HJ, Zheng J, Liu BG*, Liang GZ*. Lipase-catalyzed synthesis of tri-acetylated phloridzin and its antiproliferative activity against HepG2 cancer cells. Food Chemistry, 2019, 277: 186-194.
[56] Yue YK, Geng S, Shi Y, Liang GZ, Wang JS, Liu BG*. Interaction mechanism of flavonoids and zein in ethanol-water solution based on 3D-QSAR and spectrofluorimetry. Food Chemistry, 2019, 276: 776-781.
[55] Li JQ, Geng S, Liu BG, Wang HB, Liang GZ*. Self-assembled mechanism of hydrophobic amino acids and β-cyclodextrin based on experimental and computational methods. Food Research International, 2018, 112: 136-142.
[54] Liu YL, Ren BP, Zhang YX, Sun Y, Chang Y, Liang GZ, Xua LJ*, Zheng J*. Molecular simulation aspects of amyloid peptides at membrane interface. Biochimica et Biophysica Acta(BBA)-Biomembranes, 2018, 1860(9): 1906-1916.
[53] Liu J, Wang XS, Geng S, Liu BG*, Liang GZ*. Inhibitory mechanism of taxifolin against α-glucosidase based on spectrofluorimetry and molecular docking. Natural Product Communications, 2017, 12(11): 1725-1728.
[52] Ren BP, Liu YL, Zhang YX, Zhang MZ, Sun Y, Liang GZ, Xu JX, Zheng J. Tanshinones inhibit hIAPP aggregation, disaggregate preformed hIAPP fibrils, and protect cultured cells. Journal of Materials Chemistry B, 2018, 6: 56-67.
[51] Ren BP, Zhang MZ, Hu RD, Chen H, Wang ML, Lin YF, Sun Y, Jia LY, Liang GZ, Zheng J*. Identification of a new function of cardiovascular disease drug of 3-morpholinosydnonimine hydrochloride (SIN-1) as amyloid-β aggregation inhibitor. ACS Omega, 2017, 2(1): 243–250.
[50] Zhang MZ, Ren BP, Liu YL, Liang GZ, Sun Y, Xu LJ, Zheng J. Membrane interactions of hIAPP monomer and oligomer with lipid membranes by molecular dynamics simulations. ACS Chemical Neuroscience, 2017, 16(8): 1789-1800.
[49] Qian Y, Liang YN, Liu WQ, Liang GZ*. Comprehensive comparison of twenty structural characterization scales applied as QSAM of antimicrobial dodecapeptides derived from Bac2A against P. aeruginosa, Journal of Molecular Graphics and Modelling. 2017, 71: 88-95.
[48] Qiao Y, Zhang MZ, Liang YN, Zheng J, Liang GZ*. A computational study of self-assembled hexapeptide inhibitors against amyloid-β (Aβ) aggregation. Physical Chemistry Chemical Physics. 2017, 19: 155-166.
[47] Liu BG, Xiao HZ, Li JQ, Geng S, Ma HJ, Liang GZ*. Interaction of phenolic acids with trypsin: Experimental and molecular modeling studies. Food Chemistry. 2017, 228: 1-6.
[46] Liang YN, Qin DY, Zhang YH, Liu WQ*, Liang GZ*. Comprehensive interactions of ACE inhibitors with their receptor by a support vector machine model and molecular docking. Journal of the Chinese Chemical Society, 2017, 64(3): 310-320.
[45] 刘本国,刘江伟,李嘉琪,耿升,莫海珍,梁桂兆*. 类黄酮抑制P糖蛋白的三维定量构效关系与作用模式研究, 高等学校化学学报, 17, 38(1): 41-46.
[44] Liu BG, Zeng J, Chen C, Liu YL, Ma HJ, Mo HZ, Liang GZ*. Iteraction of cinnamic acid derivatives with β-cyclodextrin in water: experimental and molecular modeling studies, Food Chemistry, 2016, 194: 1156-1163.
[43] Zhang MZ, Hu RD, Chen H, Chang Y, Ma J, Liang GZ, Mi JY, Wang YR, and Zheng J. Polymorphic cross-seeding amyloid assemblies of amyloid-β and human islet amyloid polypeptide. Physical Chemistry Chemical Physics, 2015, 17: 23245-23256.
[42] Xiao HZ, Liu BG, Mo HZ, Liang GZ*. Comparative evaluation of tannic acid inhibiting α-glucosidase and trypsin. Food Research International, 2015, 76(3): 605-610.
[41] Li B#, Liu BG#, Li JQ, Xiao HZ, Wang JY, Liang GZ*. Experimental and theoretical investigations on the supermolecular structure of isoliquiritigenin and 6-O-α-D-Maltosyl-β-cyclodextrin inclusion complex. International Journal of Molecular Sciences, 2015, 16(8): 17999-18017.
[40] Chen C, Liu YL, Zhang J, Zhang MZ, Zheng J, Teng Y*, Liang GZ*. A quantitative sequence-aggregation relationship predictor applied as identification of self-assembled hexapeptides. Chemometrics and Intelligent Laboratory Systems, 2015, 145: 7-16.
[39] Liu BG, Li Y, Xiao HZ, Liu YL, Mo HZ, Ma HJ, Liang GZ*. Characterization of the supermolecular structure of polydatin/6-o-α-Maltosyl-β-cyclodextrin inclusion complex. Journal of Food Science, 2015, 80(6): C1156-C1161.
[38] Chen YZ, Xiao HZ, Zheng J, Liang GZ*. Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: An experimental and theoretical evaluation, PLOS One, 2015, 10(3): e0121276.
[37] Wang QM#, Liang GZ#, Zhang MZ, Zhao J, Patel K, Yu X, Zhao C, Ding BR, Zhang G, Zhou FM* and Zheng J*. De novo design of self-assembled hexapeptides as β amyloid (Aβ) peptide inhibitors, ACS Chemical Neuroscience, 2014, 5: 972-981.
[36] Liu YL, Zhang J, Chen XH, Zheng J, Wang GX, Liang GZ*. Insights into the adsorption of simple benzene derivatives on carbon nanotubes. RSC Advance, 2014, 101: 58036-58046.
[35] Zhang MZ, Hu RD, Liang GZ, Chang Y, Sun Y, Peng ZM, Zheng J. Structural and energetic insight into the cross-seeding amyloid assemblies of human IAPP and rat IAPP. Journal of Physical Chemistry B, 2014, 118(25): 7026-7036.
[34] Liang GZ*, Liu YL, Shi BZ, Zhao J, Zheng J*. An index for characterization of natural and non-natural amino acids for peptidomimetics. Plos One, 2013, 8(7): e67844.
[33] Liang GZ, Zhao J, Yu X, Zheng J*. Comparative molecular dynamics study of Human Islet Amyloid Polypeptide (IAPP) and Rat IAPP oligomer. Biochemistry, 2013, 52(6): 1089-1100.
[32] Zhao J, Zhao C, Liang GZ, Zhang MZ, Zheng J*, Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities, Journal of Chemical Information and Modeling. 2013, 53(12): 3280-3296.
[31] Liu BG*, Li W, Zhao J, Liu Y, Zhu XA, Liang GZ. Physicochemical characterisation of the supramolecular structure of luteolin/cyclodextrin inclusion complex. Food Chemistry, 2013, 141(2): 900-906.
[30] Huang DD, Liu YL, Shi BZ, Li YT, Wang GX, Liang GZ*. Comprehensive 3D-QSAR and binding mode of BACE-1 inhibitorsusing R-group search and molecular docking Comprehensive 3D-QSAR and binding mode of BACE-1 inhibitorsusing R-group search and molecular docking. Journal of Molecular Graphics and Modelling, 2013, 45: 65–83.
[29] 刘永澜, 李月婷, 史博智, 钟刊, 邵奕强, 曾亚飞, 黄丹丹, 王贵学, 梁桂兆*.基于Topomer CoMFA 和Surflex-dock 的GSK-3β抑制剂的3D-QSAR 与作用模式研究, 中国科学:化学,2013, 43(2): 198-208.
[28] 苗霞, 梁桂兆*. R基团搜索技术用于PTH类Tau蛋白抑制剂的分子设计, 高等学校化学学报, 2012, 33(10):2263-2268.
[27] Liang GZ*, Ma XY, Li YC Lv FL, Yang L. Toward an improved discrimination of outer membrane proteins using a sequence-based approach, Biosystems, 2011, 105(1): 101-106.
[26] Zhao J, Yu X, Liang GZ, Zheng J*. Heterogeneous triangular structures of human islet Amyloid polypeptide (Amylin) reveal the polymorphic nature of a myloid fibrils. Biomacromolecules, 2011, 12(5): 1781–1794.
[25] Zhao J, Wang QM, Liang GZ, Zheng J*. Molecular dynamics simulations of low-ordered alzheimer β-amyloid oligomers from dimer to hexamer on self-assembled monolayers, Langmuir, 2011, 27(24): 14876-14887.
[24] Zhao J, Yu X, Liang GZ, Zheng J*. Structural polymorphism of human islet amyloid polypeptide (hIAPP) oligomers highlights the importance of interfacial residue interactions. Biomacromolecules, 2011, 12 (1): 210-220.
[23] Zhao W, Liang GZ*, Chen YZ, Yang L. A new quantitative structure–retention relationship model for predicting chromatographic retention time of oligonucleotides. Science China Chemistry, 2011, 54(7): 1064-1071.
[22] Liang GZ*, Zhao W. Using factor analysis scales of generalized amino acid information for prediction and characteristic analysis of -turns in proteins based on a support vector machine model. Science China Chemistry, 2010, 53(5): 1161–1167.
[21] Niu WH, Xia QY, Liang GZ*. A multi-scale parameterization approach of peptides for quantitative sequence-activity models, Protein & Peptide Letters, 2010, 17: 591-598.
[20] Jing JH, Liang GZ*, Mei H, Zhang QX, Li ZL, Lv L. QSAR studies on influenza neuraminidase inhibitors--Acylthiourea analogue. Chinese Journal of Structural Chemistry, 2009, 28(2): 200-204.
[19] Liang GZ*, Yang L, Kang LF, Mei H, Li ZL. Using multidimensional patterns of amino acid attributes for QSAR analysis of peptides, Amino Acids, 2009, 37(4): 583-591.
[18] Liang GZ*, Yang L, Chen ZC, Mei H, Shu M, Li ZL. A set of new amino acid descriptors applied in prediction of MHC class I binding peptides. European Journal of Medicinal Chemistry, 2009, 44((3): 1144-1154.
[17] Jing JH, Liang GZ*, Mei H, Xiao SY, Xia ZN, Li ZL. Quantitative structure–mobility relationship studies of dipeptides in capillary zone electrophoresis using three-dimensional holographic vector of atomic interaction field, Molecular Simulation, 2009, 35: 263-269.
[16] Yang JG, Liu BG*, Liang GZ, Ning ZX. Structure-activity relationship of flavonoids active against lard oil oxidation based on quantum chemical analysis, Molecules, 2009, 14(1): 46-52.
[15] Kang LF, Liang GZ*, Shu M, Yang SB, Li ZL. Scores of amino acid 0D-3D information as applied in cleavage site prediction and better specificity elucidation for human immunodeficiency virus type 1 protease. Science in China Series B: Chemistry, 2008, 51:794-800.
[14] Liang GZ, MEI Hu, Chen ZC, Zhou Y, Yang SB et al. Recognition for avian influenza virus proteins based on support vector machine and linear discriminant analysis. Science in China Series B: Chemistry, 2008, 51: 166-170.
[13] Shu M, Huo DQ, Mei H, Liang GZ*, Zhang M, Li ZL. New descriptors of amino acids and its applications to peptide quantitative structure-activity relationship. Chinese Journal of Structural Chemistry, 2007, 27(11): 1375-1383.
[12] Liang GZ*, Li SZ. Liang GZ, Mao S, Sheng S, Li ZL. A new set of amino acid descriptors for the development of quantitative sequence-activity modelings of HLA-A*0201 restrictive CTL epitopes. Journal of the Chinese Chemical Society, 2008, 55:1178-1185.
[11] Liang GZ*, Chen GH, Niu WH, Li ZL. Factor Analysis scales of generalized amino acid information as applied in predicting interactions between the human Amphiphysin-1 SH3 domains and their peptide ligands. Chemical Biology & Drug Design, 2008, 71(4): 345-351.
[10] Liang GZ*, Li ZL. A new sequence representation as applied in better specificity elucidation for human immunodeficiency virus type 1 protease, Peptide Science, 2007, 88(3): 401-412.
[9] Liang GZ*, Li ZL. Scores of generalized base properties for quantitative sequence-activity modelings for E.coli promoters based on support vector machine. Journal of Molecular Graphics and Modelling, 2007, 26(1): 269-281.
[8] Liang GZ*, Li ZL. Factor analysis scale of generalized amino acid information as the source of a new set of descriptors for elucidating the structure and activity relationships of cationic antimicrobial peptides. QSAR & Combinatorial Science, 2007, 26(6): 754-763.
[7] 梁桂兆, 梅虎, 周原, 杨善斌, 吴世荣, 李志良. 氨基酸描述子SZOTT用于多肽定量序效建模研究, 高等学校化学学报, 2006, 27(10): 1900-1902.
[6] 梁桂兆, 杨善斌, 周原, 周鹏, 李志良. 新氨基酸拓扑描述子得分矢量及支持向量机用于肽定量序列-迁移预测, 科学通报, 2006, (51)22: 2700-2705.
[5] 梁桂兆, 梅虎, 周原, 周鹏, 李志良. 碱基和核苷及其衍生物的13C核磁共振波谱模拟, 分析化学, 2006, 34(3): 329-332.
[4] 梁桂兆, 梅虎, 周原, 李志良. 计算机辅助药物设计中的多维定量构效关系模型化方法, 化学进展, 2006, 18(1): 120-127.
[3] 梁桂兆, 梅虎, 周鹏, 周原, 李志良. 三维原子场作用全息矢量用于二氢叶酸还原酶抑制剂及苦味二肽QSAR研究, 物理化学学报, 2006, 22(3): 388-390.
[2] 梁桂兆, 周鹏, 周原, 张巧霞, 李志良. 一组新氨基酸描述子用于肽定量构效关系研究, 化学学报, 2006, 64(5): 393-396.
[1] 梁桂兆, 李志良, 周原, 何留, 周鹏. 一种新多肽表征方法及支持向量机用于肽HPLC定量结构-保留建模预测, 物理化学学报, 2006, 22(9): 1052-1055.