教师英文名称: | Wenxi Wang |
电子邮箱: | |
所在单位: | 机械与运载工程学院 |
学历: | 研究生(博士后) |
办公地点: | 机械工程楼(第七教学楼)7330室 |
性别: | 男 |
学位: | 博士学位 |
在职信息: | 在职 |
毕业院校: | 北京交通大学 |
学科: | 机械制造及其自动化 |
硕士生导师 | |
曾获荣誉: |
2020-08-25曾获荣誉当选:机械工程学报:青年杰出论文奖;
邮箱:
姓名:王文玺 学历学位:博士后/工学博士 专业技术职务:讲师 办公地址:重庆大学A区机械工程楼(第七教学楼) 7330室 Email: wx.wang@cqu.edu.cn 通讯地址:重庆市沙坪坝区沙正街174号重庆大学A区机械与运载工程学院 2023年研究生招生计划:学术型硕士1~2名 |
1. 工作经历
2022.11-至今,重庆大学,机械与运载工程学院,智能制造与工业工程系,讲师
2019.11-2022.10,重庆大学,机械与运载工程学院,智能制造与工业工程系,助理研究员/博士后
2. 教育背景
2014.09-2019.10,北京交通大学,机械工程,工学博士(硕博连读)
2016.10-2017.10,法国里昂大学-圣埃蒂安国立工程师学校,机械工程,博士生联合培养(CSC)
2013.09-2014.06,北京交通大学,机械制造及其自动化,工学硕士(硕博连读)
2009.09-2013.06,北京交通大学,机械工程及自动化,工学学士
3. 学术主页
Researchgate:https://www.researchgate.net/profile/Wenxi-Wang-3
4. 研究经历
(1) 主持项目
国家自然科学基金青年基金项目,“多重弱刚性航发整体叶盘粘弹性接触砂带磨削颤振机理与抑制方法”,2022.01-2024.12, No.52105430
中国博士后科学基金面上项目,“刚柔时变接触航发空心风扇叶片砂带磨削颤振机理及其调控”,2020.07-2022.11,No.2020M673126
重庆市自然科学基金项目,2020.09-2022.05,No.cstc2020jcyj-bshX0128
(2) 参研项目
国家自然科学基金面上基金项目,2022.01-2025.12, No.52175377
国家自然科学基金面上基金项目,2021.01-2024.12, No.52075059
北京交通大学成果转化项目,2018.03-2022.12,No.M18ZH00040
国家自然科学基金青年基金项目,2017.01-2019.12,No.51605024
国家自然科学基金青年基金项目,2016.01-2018.12,No.51505025
中国铁路总公司科技研究开发计划课题项目,2015.06-2017.05,No.2015G003-G
主要学术论文
Zou L, Li YT, Gong MW, Han CC, Dong JM, Li H, Wang WX*, Effects of progressive wear of the hollow-sphere abrasive grain on recrystallization of DD6[J], International Journal of Advanced Manufacturing Technology, 2022, 121(1-2): 283-294.
Zou L, Li H, Wang WX*, Huang Y, Li YT. A precision grinding technology for zirconium alloy tubes based on ultrasonic wall thickness automatic measurement system[J], International Journal of Advanced Manufacturing Technology, 2022, 121(7-8): 4419-4429.
Wang WX, Li JY, Fan WG, and Zhao CY*. Belt grinding mechanism-based method for roughness profile prediction of the rail surface[J]. Journal of The Brazilian Society of Mechanical Sciences and Engineering, 2022, 44(3): 84.
王文玺, 黄云, 刘占芳*, 等. 大曲率表面机器人高速磨削中的陀螺力矩分析[J]. 机械工程学报, 2022, 58(15): 208-215.
Huang Y, Wu Y, Xiao GJ, Zhang YD, and Wang WX*. Analysis of abrasive belt wear effect on residual stress distribution on a grinding surface[J]. Wear, 2021, 486: 204113.
He Z, Li JY, Liu YM, and Wang WX*. Investigation of conditions leading to critical transitions between abrasive belt wear modes for rail grinding[J]. Wear, 2021, 484-485: 204048.
Xiao GJ, Sone KK, Liu S, Wu Y, and Wang WX*. Comprehensive Investigation into the Effects of Relative Grinding Direction on Abrasive Belt Grinding Process[J]. Journal of Manufacturing Processes. 2021; 62: 753-761.
Wang WX*, Salvatore F, and Rech J. Characteristic assessment and analysis of residual stresses generated by dry belt finishing on hard turned AISI52100[J]. Journal of Manufacturing Processes, 2020, 59:11-18.
Huang Y, Liu S, Xiao GJ, He Y, and Wang WX*. Experimental investigation into the effects of adhesion wear on belt grinding of glass fiber reinforced plastics[J]. International Journal of Advanced Manufacturing Technology, 2020, 109(1): 463-473.
Zhao CY, Li JY, Fan WG, Liu YM, and Wang WX*. Experimental and simulation research on residual stress for abrasive belt rail grinding[J]. International Journal of Advanced Manufacturing Technology, 2020, 109(1): 129-142.
Fan WG, Wang WX*, Wang JD, Zhang XL, Qian C, and Ma TF. Microscopic contact pressure and material removal modeling in rail grinding using abrasive belt[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2021, 235(1-2):3-12.
Fan WG, Wang JD, Cheng JF, Qian C, and Wang WX*. Dynamic contact modeling considering local material deformation by grit indentation for abrasive belt rail grinding[J]. International Journal of Advanced Manufacturing Technology, 2020, 108(7-8): 2165-2176.
Fan WG, Zhang S, Wang JD, Wang XH, and Wang WX*. Temperature field of open-structured abrasive belt rail grinding using FEM[J]. International Journal of Simulation Modelling, 2020, 19(2): 346-356.
Huang Y, He S, Xiao GJ, Li W, Jiahua SL, and Wang WX*. Effects research on theoretical-modelling based suppression of the contact flutter in blisk belt grinding[J]. Journal of Manufacturing Processes, 2020, 54: 309-317.
Fan WG, Hou GY, Wang WX*, et al. Design and dynamic analysis of a new rail grinding device using closed abrasive belt[J]. International Journal of Simulation Modelling, 2019, 18(3): 531-542.
Wang WX, Li JY, and Fan WG. Investigation into static contact behavior in belt rail grinding using a concave contact wheel[J]. International Journal of Advanced Manufacturing Technology, 2019, 101(9-12): 2825-2835.
Wang WX, Li JY, Fan WG, et al. A numerical model to investigate contact status for rail grinding by abrasive belt with an axial deflection[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019.
Wang WX*, Salvatore F, Rech J, et al. Comprehensive investigation on mechanisms of dry belt grinding on AISI52100 hardened steel[J]. Tribology International, 2018, 121: 310-320. (SCI, WOS: 000428605700032)
Wang WX*, Salvatore F, Rech J, et al. Investigating adhesion wear on belt and its effects on dry belt finishing[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(12): 570.
Wang WX*, Salvatore F, Rech J, et al. Investigating effects of adhesion wear on cutting efficiency and energy cost in dry belt finishing[J]. International Journal of Advanced Manufacturing Technology, 2018, 95(5-8): 2119-2123.
Wang WX, Li JY, Fan WG, et al. Characteristic quantitative evaluation and stochastic modeling of surface topography for zirconia alumina abrasive belt[J]. International Journal of Advanced Manufacturing Technology, 2017, 89(9-12): 3059-3069.
樊文刚, 王文玺*, 侯广友, 等. 考虑曲率匹配因素的钢轨砂带打磨宏观接触压力建模与仿真[J]. 机械工程学报, 2020, 56(2): 154-162. (EI,AN: 20201508385305)
王文玺, 李建勇, 樊文刚, 等. 基于赫兹接触的钢轨砂带打磨温度建模研究[J]. 铁道学报, 2019 41(7):141-146.
王文玺, 李建勇, 樊文刚, 等. 基于赫兹接触的钢轨砂带打磨功率预测模型[J]. 中国铁道科学, 2017, 38(3):25-30.
王文玺, 李建勇, 樊文刚, 等. 面向钢轨砂带打磨的砂带磨耗过程建模[J]. 西南交通大学学报, 2017, 52(1):141-147.
王文玺, 李建勇, 樊文刚, 等. 砂带三维表面形貌特征量化评价方法[J]. 华南理工大学学报:自然科学版, 2016, 44(12):14-22.
Wang WX*, Salvatore F, Rech J, et al. Effects of belt’s adhesive wear on surface integrity in dry belt finishing[C]//Procedia CIRP—4th CIRP Conference on Surface Integrity, Tianjin, China, 2018, 71: 31-34.
Wang WX, Li JY, Fan WG. A numerical approach to analyze ground surface texture based on abrasive belt topography[C]//Proceedings of Asia International Conference on Tribology 2018, Malaysian Tribology Society, Sarawak, Malaysia, 2018, 2018: 193-195.
机械与运载工程学院>重庆大学>讲师
北京交通大学> 机械工程> 工学博士学位> 博士研究生毕业
Ecole Nationale d'Ingénieurs de Saint Etienne> 机械工程> 博士学位> 博士研究生毕业
北京交通大学> 机械工程及自动化> 工学学士学位> 大学本科毕业
TC22/WG4砂带磨削装备标准创新工作组成员
团队介绍:空天构件表面柔性磨具精密加工属于强时变、非线性、多场耦合的复杂物理过程,磨粒-工件的空间相对位置及相对尺寸、真实磨削力与磨削深度等参数不断变化。针对空天高性能装备构件结构复杂、单晶合金/钛合金/高温合金/陶瓷等材料难加工、且加工质量及其一致性要求高等特性,亟需采用机械工程、材料科学与工程、控制理论与控制工程、力学等多学科基础理论,揭示柔性磨削工艺参数与时变接触应力的映射关系,阐明磨削加工界面力场、温度场、化学场等多能量场耦合作用机制,探索磨削参数耦合控制的多维磨削轨迹优化策略,创立接触应力约束的柔性磨具位移自适应逐点调控原理和方法,是实现空天构件表面数字化精准加工的基本保障。
访问量:
开通时间:..