付澍

个人信息Personal Information

副教授

硕士生导师

教师英文名称:Shu Fu

教师拼音名称:fu shu

电子邮箱:

入职时间:2016-09-01

所在单位:微电子与通信工程学院

学历:博士研究生毕业

性别:男

联系方式:littlegroom(微信)

学位:工学博士学位

在职信息:在职

学科:通信与信息系统
信号与信息处理
信息与通信工程其他专业

研究方向

当前位置: 中文主页 >> 研究方向

团队研究方向及代表作

1B5G/6G超密集蜂窝网络的协同与多址传输理论

B5G/6G超密集蜂窝网络存储、计算、传输资源智能协同机制;基于凸优化、博弈论、深度强化学习的多址干扰管理;智能反射表面(RIS)协同的非正交多址(NOMA)技术。

代表作

[1] “Energy-efficient design of STAR-RIS aided MIMO-NOMA networks,” IEEE Transactions on Communications, vol. 71, no. 1, pp. 498-511, 2023.(通讯)

[2] “Reconfigurable intelligent surface assisted non-orthogonal multiple access network based on machine learning approaches,” IEEE Network, submitted, pp. 1-7, 2023.(一作)

[3] “Albert-empowered task-oriented semantic communication with MaMIMO channels,” IEEE Transactions on Cognitive Communications and Networking, major revision, pp. 1-9, 2023.(学生一作,导师通讯)

[4] “Optimizing age of information in RIS-assisted NOMA networks: A deep reinforcement learning approach,” IEEE Wireless Communications Letters, vol. 11, no. 10, pp. 2100-2104, 2022.(学生一作,导师通讯)

[5] “Joint transmission scheduling and power allocation in non-orthogonal multiple access,” IEEE Transactions on Communications, vol. 67, no. 11, pp. 8137-8150, 2019.(一作)

[6] “Cooperative computing in integrated blockchain based internet of things,” IEEE Internet of Things Journal, vol. 7, no. 3, pp. 1603-1612, 2020.(一作)

[7] “Interference cooperation via distributed game in 5G networks,” IEEE Internet of Things Journal, vol. 6, no. 1, pp. 311-320, 2019.(一作)

[8] “Power-fractionizing mechanism: achieving joint user scheduling and power allocation via geometric programming,” IEEE Transactions on Vehicular Technology, vol. 67, no. 3, pp. 2025-2034, 2018.(一作)

[9] “Transmission scheduling and game theoretical power allocation for interference coordination in CoMP,” IEEE Transactions on Wireless Communications, vol. 13, no. 1, pp. 112 -123, 2014.(一作)

[10] “Virtualization enabled multi-point cooperation with convergence of communication, caching, and computing”, IEEE Network, vol. 34, no. 1, pp. 94-100, 2020.(一作)

[11] “Distributed transmission scheduling and power allocation in CoMP,” IEEE Systems Journal, vol. 12, no. 4, pp. 3096-3107, 2018.(一作)  

[12] “Energy-efficient pre-coded coordinated multi-point transmission with pricing power game mechanism,” IEEE Systems Journal, vol. 11, no. 2, pp. 578-587, 2017.(一作)

[13] “Green wireless cooperative networks,” A chapter of Green IT Engineering: Social, Business and Industrial Applications, Springer, ISBN: 978-3-030-00252-7, 41-71, 2016.(一作)

2)无人机辅助的网络智能应急服务理论

基于多维时效性的无人机智能应急服务机制;基于深度强化学习的无人机协同干扰管理;多无人机协同隐蔽通信;面向无人机协同的多智能体架构设计。

代表作

[1] “Joint power allocation and 3D deployment for UAV-BSs: A game theory based deep reinforcement learning approach," IEEE Transactions on Wireless Communications, major revision, pp. 1-13, 2023.(一作)

[2] “Caching placement optimization in UAV-assisted cellular networks: A deep reinforcement learning based framework,” IEEE Wireless Communications Letters, major revision, pp. 1-5, 2023.(学生一作,导师通讯)

[3] “Towards energy-efficient data collection by unmanned aerial vehicle base station with NOMA for emergency communications in IoT,” IEEE Transactions on Vehicular Technology, vol. 72, no. 1, pp. 1211-1223, 2023.(一作)

[4] “Optimal hovering height and power allocation for UAV-aided NOMA covert communication system,” IEEE Wireless Communications Letters, vol. PP, no. 99, pp. 1-5, 2023.(学生一作,导师二作)

[5] “Minimizing the average AoI of UAV aided covert communication with a DRL framework,” IEEE Transactions on Wireless Communications, submitted, pp. 1-12, 2023.

[6] “Towards energy-efficient UAV-assisted wireless networks using an artificial intelligence approach,” IEEE Wireless Communications, vol. 29, no. 5, pp. 77-83, 2022.(一作)  

[7] “An energy efficient intelligent framework of UAV enhanced vehicular networks,” IEEE Vehicular Technology Magazine, vol. 17, no. 2, pp. 94-102, 2022.(一作)

[8] “Energy-efficient UAV enabled data collection via wireless charging: a reinforcement learning approach,” IEEE Internet of Things Journal, vol. 8, no. 12, pp. 10209-10219, 2021.(一作)  

[9] “Joint 3D deployment and power allocation for UAV-BS: A deep reinforcement learning approach,” IEEE Wireless Communications Letters, vol. 10, no. 10, pp. 2309-2312, 2021.  (学生一作,导师通讯)

[10] “物联网数据收集中无人机路径智能规划,” 通信学报, 42(2): 124-133, 2021.(一作)

[11] “Joint unmanned aerial vehicle (UAV) deployment and power control for internet of things networks” IEEE Transactions on Vehicular Technology, vol. 69, no. 4, pp. 4367-4378, 2020.(一作)

3)基于低轨卫星互联网的星地协同理论

面向海量终端设备的星地多维资源协同分配机制;星地协同中的数据安全传输与用户公平性保障机制;星地传输中的飞艇中继与时间窗扩展机制;星地中继的用户分簇与多跳路由机制。

代表作

[1] “Collaborative Multi-Resource Allocation in Terrestrial-Satellite Network Towards 6G,” IEEE Transactions on Wireless Communications, vol. 20, no. 11, pp. 7057-7071, 2021.(一作)

[2] “Improving the system performance in terrestrial-satellite relay networks by configuring aerial relay,” IEEE Transactions on Vehicular Technology, vol. 70, no. 20, pp. 13139-13148, 2021.(学生一作,导师通讯)

[3] “Integrated Resource Management for Terrestrial-Satellite Systems,” IEEE Transactions on Vehicular Technology, vol. 69, no. 3, pp. 3256-3266, 2020.(一作)

[4] “Multi-resources management in 6G-oriented terrestrial-satellite network,” China Communications, vol. 18, no. 9, pp. 24-36, 2021.(一作)

[5] “Dynamic scheduling for emergency tasks in space data relay network” IEEE Transactions on Vehicular Technology, vol. 70, no. 1, pp. 795-807, 2021.(三作)

[6] “Dynamic user association for resilient backhauling in satellite–terrestrial integrated networks,” IEEE Systems Journal, vol. 14, no. 4, pp. 5025-5036, 2020.(三作)

[7] “Contact plan design with directional space-time graph in two-layer space communication networks,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10862-10874, 2019.(三作)

4)全光交换与传输理论

全光交换器组网的多域性能联合分析;低时延保障的WDM网络联合数据调度与路由机制;可见光通信的多址传输机制;低时延与高能效的光与无线跨网络协同传输机制。

代表作

[1] “Software defined wireline-wireless cross-networks: framework, challenges and prospects,” IEEE Communications Magazine, vol. 56, no. 8, pp. 145-151, 2018.(一作)

[2] “NOMA for energy-efficient LiFi-enabled bidirectional IoT communication,” IEEE Transactions on Communications, vol. 69, no. 3, pp. 1693-1706, 2021.(二作)

[3] “A Survey of underwater optical wireless communication,” IEEE Communications Surveys & Tutorials, vol. 19, no. 1, pp. 204-238, 2017.(二作,高被引)

[4] “Switch cost and packet delay tradeoff in data center networks with switch reconfiguration overhead,” Elsevier Computer Networks, vol. 87, pp. 33-43, 2015.(一作)

[5] “OFDM-Based Generalized Optical MIMO,” Journal of Lightwave Technology, vol. 39, no. 19, pp. 6063-6075, 2021.(三作)

[6] “Joint scheduling and routing for QoS guaranteed packet transmission in energy efficient reconfigurable WDM mesh networks,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 8, pp. 1533-1541, 2014.(二作)

[7] “Cross-networks energy efficiency tradeoff: from wired networks to wireless networks,” IEEE Access, vol. 5, pp. 15-26, 2017.(一作)

5)面向下一代网络的通信维度突破

对无线通信时域、频域、空域之外,新的信息承载方式的探索;基于数论的信源编码与信息压缩。

代表作

[1] “Data attachment: A novel type of wireless transmission,” IEEE Wireless Communications, vol. 26, no. 6, pp. 126-131, 2019.(一作)