职称:副教授
入职时间:2024-09-02
所在单位:数学与统计学院
学历:博士研究生毕业
办公地点:LD612
在职信息:在职
研究方向:可积系统。
主要利用黎曼-希尔伯特问题方法研究可积系统的各类性质。
科研项目:
主持国家级科研项目2项,省部级科研项目4项:
国家自然科学基金青年项目C类(2026-2028),国家自然科学基金理论物理专项(2023-2023),重庆市自然科学基金面上项目(2025-2028),中国博士后科学基金第72批面上资助(2022-2024),2023年上海市“超级博士后”激励计划,重庆市全职博士后出站留(来)渝资助项目。
论文成果:
共发表SCI论文15篇,他引百余次(数据来源WebofScience):
1. Yang, Yiling, Fan, Engui, Soliton resolution and large time behavior of solutions to the Cauchy problem for the Novikov equation with a nonzero background, Adv. Math., 426 (2023), Paper No. 109088, 86 pp.(高被引);
2. Yang, Yiling, Fan, Engui, On the long-time asymptotics of the modified Camassa-Holm equation in space-time solitonic regions, Adv. Math., 402 (2022), Paper No. 108340, 78 pp.;
3. Taiyang Xu, Yiling Yang, Lun Zhang(字母排序), Transient asymptotics of the modified Camassa-Holm equation, J. Lond. Math. Soc., 110 (2024), no. 2, Paper No. e12967, 67 pp.;
4. Yiling Yang, Engui Fan, Yue Liu, On the global existence for the modified Camassa-Holm equation, J. Lond. Math. Soc., 112 (2025), e70232;
5. Yiling Yang, Engui Fan, Yue Liu, Orbital stability of a soliton solution for the derivative nonlinear Schrödinger equation in the L^2 space, Math. Z. 310 (2025), no. 2, Paper No. 21;
6. Engui Fan,Gaozhan Li, Yiling Yang(字母排序), On L2-orbital stability of Hasimoto soliton solutions for the Hirota equation on the line, J. Differential Equations, 421 (2025), 104-126;
7. Yiling Yang, Engui Fan, Soliton resolution for the short-pulse equation. J. Differential Equations, 280 (2021), 644-689;
8. Engui Fan, Gaozhan Li, Yiling Yang,(字母排序) , On the long-time asymptotics of the modified Camassa-Holm equation with step-like initial data, European J. Appl. Math., Published online;
9. Gaozhan Li Jian Xu. Yiling Yang, (字母排序), Riemam-Hilbertproblem and solton resolution for the two-component Camassa-Hom system, to appear in Bull. Lond. ath. Soc.;
10. Eneui Fan, Gaozhan Li, Yiling Yang(字母排序), Riemann-Hilbert approach to the Algebro-Geometric solution of the modified Camassa-Holm equation with linear dispersion term, to appear in Proc. Amer. Math. Soc.;
11. Yiling Yang, Engui Fan, Riemann-Hilbert approach to the modified nonlinear Schrödinger equation with non-vanishing asymptotic boundary conditions, Phys. D, 417 (2021), 132811;
12. Yiling Yang, Qiaoyuan Chen, Engui Fan, Long-time Asymptotic Behavior for the Derivative Schrodinger Equation with Finite Density Type Initial Data, Chinese Ann. Math. Ser. B, 43 (2022), 893-948;
13. Kai Xu, Yiling Yang, Engui Fan, On the long-time asymptotics of the Camassa-Holm equation in solitonic regions, J. Differential Equations, 380 (2024), 24-91;
14. Qiaoyuan Chen, Yiling Yang, Engui Fan, Long-time asymptotic behavior of a mixed schrödinger equation with weighted Sobolev initial data. J. Math. Phys., 62 (2021), 093507;
15. Gaozhan Li, Yiling Yang, Engui Fan, Long time asymptotic behavior for the nonlocal nonlinear Schrödinger equation with weighted Sobolev initial data, Sci. China Math, 68 (2025), 2, 379-398.
[1]可积系统