金晓清

个人信息Personal Information

教授

博士生导师

硕士生导师

教师英文名称:Xiaoqing Jin

教师拼音名称:jinxiaoqing

所在单位:航空航天学院

职务:工程力学系主任

办公地点:重庆大学机械传动国家重点实验室403

学位:工学博士学位

在职信息:在职

毕业院校:美国西北大学

个人简介Personal Profile

  • 个人简介

金晓清教授师从固体力学家、美国工程院院士 Leon M. Keer 教授,于 2006 年在美国西北大学获得理论与应用力学方向博士学位。随后与 Q. Jane Wang(国家“千人计划” 王茜)教授合作,从事博士后研究。2013 年 2 月,获选重庆大学“百人计划” 全职回国,加入机械传动国家重点实验室,现担任重庆大学航空航天学院工程力学系主任。研究领域聚焦断裂疲劳、接触力学、摩擦学、微观力学等国际前沿, 已发表学术论文被谷歌学术收录约 100 篇(http://scholar.google.com/citations?user=5oF2f9IAAAAJ),被引 1100 余次,论文发表于众多力学、摩擦学领域的国际顶级期刊,如 JMPS、IJES、IJP、TribInt 等,与合作者的摩擦学论文获得美国摩擦学家与润滑工程师协会(STLE)2014 年度最近论文奖。为国家自然科学基金、国家留学基金委、多个省市科技委担任项目评审专家,现任我国轴承行业旗舰刊物《轴承》编委,及摩擦学领域国际学术期刊《Frontiers in Mechanical Engineering - Tribology》的评审编委,已为二十多种国际著名学术刊物担任评审工作,并应邀在国内外会议、中美高校、汽车行业公司做报告60余次。作为项目负责人主持国家自然科学基金面上项目2项,中央高校基本科研业务费重点项目3项,及多项重庆市科学基金项目与企业横向项目;参与自然科学基金重点项目1项,国家重点研发计划子课题1项。近两年获得授权发明专利5项,并合作编写专著1部。


  • 研究方向

摩擦学与表面工程、断裂疲劳与固体力学、复合材料与细观力学


  • 代表性研究项目

1. 国家自然科学基金面上项目,项目批准号:51875059,项目名称:含夹杂或裂纹非均质材料摩擦磨损的微观机理研究

2. 国家自然科学基金面上项目,项目批准号:51475057,项目名称:轴承钢接触疲劳的微观结构演化机理和实验研究

3. 中央高校基本科研业务费专项项目,项目批准号:CYB17025,项目名称:非均质材料接触疲劳的微观力学机理和实验研究

4. 中央高校基本科研业务费专项项目,项目批准号:CYB18020,项目名称:高周接触疲劳的白蚀带微观机理研究

5. 重庆市留学人员创业创新支持计划,项目名称:滚动轴承接触疲劳的微观机理与寿命模型研究

6. 重庆大学研究生教育教学改革研究项目:双一流”背景下力学研究生培养模式与教学改革的探索与实践—基于国家“卓越人才”建设的视角

7. 企业项目:变强度铝合金保险杠横梁抗撞性研究、装配式建筑预制构件力学与抗震性能研究、钢筋桁架楼承板的力学与耐火性能研究

8. 重庆市基础研究与前沿探索项目,项目批准号:1020708920130131,项目名称:非金属夹杂物对轴承钢疲劳寿命影响的蒙特卡罗仿真

9. 重庆大学“百人计划”,机械传动国家重点实验室配套科研启动基金

10. 重庆大学英文课程:Finite Element Method Analysis

11. 高端外国专家引进计划:

         (1) 粘附接触及渐近分析理论,项目编号:G2021165001L

         (2) 生物材料的相关力学与摩擦学问题研究,项目编号:G20190022015

         (3) 微纳米压痕技术:力学机理及其应用,项目编号:G20190022013


  • 教育教学成果与主讲课程

1. 部分教育教学成果

(1) 为航空航天学院本科生主讲《塑性力学》荣获2021年重庆市一流本科线下课程

(2) 主持重庆大学研究生教育教学改革研究项目一项(已结题)

(3) 主持重庆大学示范性虚拟仿真实验教学项目一项(已结题

(4) 申报重庆大学第一期“研究生全球学术课程(线上)项目”,与外国教授合作开设《Contact mechanics of biomaterials》

(5) 申报重庆大学第二期“研究生全球学术课程(线上)项目”,与外国教授合作开设《Micro-nano depth-sensing indentation: applications in material testing》

(6) 主持重庆大学全英文授课项目《Finite Element Analysis》,授课正在进行中

(7) 指导市级大学生创新创业项目1项(已结题),校级大学生科研训练计划1项

(8) 所指导的2名硕士研究生获得校级及重庆市优秀毕业论文

2. 主讲课程

塑性力学》、《Finite Element Analysis》、《弹塑性力学》、《变分原理基础》、《现代力学的发展及其在工程中的应用》等


  • 部分奖励与荣誉

1. “Frontiers in Mechanical Engineering”国际杂志编委

2. 担任行业旗舰杂志《轴承》第六届编委会委员

3. 荣获美国摩擦学家和润滑工程师协会(STLE)最佳论文奖—Captain Alfred E. Hunt Memorial Award,

4. 入选重庆市学术技术带头人及后备人选

5. 重庆市“百名海外高层次人才集聚计划”


  • 研究生就业去向及招生意向

目前在读博/硕士生10人,已毕业博士生2名,研究生14名,就职于博智林、上海航发等知名企业与研究机构。

欢迎具有力学、物理、材料及相关学科背景,且有志于科学研究的学生报考本课题组博士、硕士研究生;欢迎相关专业博士毕业生加入课题组从事博士后研究工作。


  • 部分代表性论文

    1. JMPS论文

    (1) Depth-sensing spherical indentation of an elastic sphere on an elastic substrate. Journal of the Mechanics and Physics of Solids, 2021, 149: 104297. 

    doi: https://doi.org/10.1016/j.jmps.2021.104297

    (2) Collective indentation as a novel strategy for mechanical palpation tomography. Journal of the Mechanics and Physics of Solids, 2020, 143: 104063.  

    doi: https://doi.org/10.1016/j.jmps.2020.104063

    (3) 3D coupled field in a transversely isotropic magneto-electro-elastic half space punched by an elliptic indenter. Journal of the Mechanics and Physics of Solids, 2015, 75: 1-44. 

    doi: https://doi.org/10.1016/j.jmps.2014.11.002

    (4) Refined Dugdale plastic zones of an external circular crack. Journal of the Mechanics and Physics of Solids, 2008, 56(4): 1127-1146. 

    doi: https://doi.org/10.1016/j.jmps.2007.10.009

    2. IJES论文

    (1) Depth-sensing indentation of spherical particles on corrugated substrates — An asymptotic model. International Journal of Engineering Science, 2020, 154: 103349. 

    doi: https://doi.org/10.1016/j.ijengsci.2020.103349

    3. IJP论文

    (1) Analytical solution for elastic fields caused by eigenstrains in a half-space and numerical implementation based on FFT. International Journal of Plasticity, 2012, 35: 135-154.

    doi: https://doi.org/10.1016/j.ijplas.2012.03.002

    4. MoM论文

    (1) Analytical and numerical evaluation of the interaction energy between screw dislocation and inhomogeneous inclusion. Mechanics of Materials, 2021, 156: 103788. 

    doi: https://doi.org/10.1016/j.mechmat.2021.103788

    (2) A new fast method for solving contact plasticity and its application in analyzing elasto-plastic partial slip. Mechanics of Materials, 2013, 60: 18-35. 

    doi: https://doi.org/10.1016/j.mechmat.2013.01.001

    5. IJSS论文

    (1) Elasto-plastic contact of materials containing double-layered inhomogeneities. International Journal of Solids and Structures, 2017, 126-127: 208-224. 

    doi: https://doi.org/10.1016/j.ijsolstr.2017.08.006

    (2) An efficient approximate numerical method for modeling contact of materials with distributed inhomogeneities. International Journal of Solids and Structures, 2014, 51(19): 3410-3421. 

    doi: https://doi.org/10.1016/j.ijsolstr.2014.06.005

    (3) Numerical methods for contact between two joined quarter spaces and a rigid sphere. International Journal of Solids and Structures, 2012, 49(18): 2515-2527. 

    doi: https://doi.org/10.1016/j.ijsolstr.2012.05.027

    (4) New Green’s function for stress field and a note of its application in quantum-wire structures. International Journal of Solids and Structures, 2009, 46(21): 3788-3798. 

    doi: https://doi.org/10.1016/j.ijsolstr.2009.07.005

    6. European Journal of Mechanics – A/Solids论文

    (1) Analytical solution for the displacement of a polygonal inclusion with a special application to the case of linear eigenstrain. European Journal of Mechanics – A/Solids, 2020, 84(10): 104049. 

    doi: https://doi.org/10.1016/j.euromechsol.2020.104049

    7. JAM论文

    (1) Explicit analytical solutions for the complete elastic field produced by an ellipsoidal thermal inclusion in a semi-infinite space. Journal of Applied Mechanics, 2018, 85(5): 051005. 

    doi: https://doi.org/10.1115/1.4039373

    (2) On the displacement of a two dimensional eshelby inclusion of elliptic cylindrical shape. Journal of Applied Mechanics, 2017, 84(7): 074501. 

    doi: https://doi.org/10.1115/1.4036820

    (3) Explicit analytical solutions for a complete set of the eshelby tensors of an ellipsoidal inclusion. Journal of Applied Mechanics, 2016, 83(12): 121010. 

    doi: https://doi.org/10.1115/1.4034705

    (4) A closed-form solution for the eshelby tensor and the elastic field outside an elliptic cylindrical inclusion. Journal of Applied Mechanics, 2011, 78(3): 031009. 

    doi: https://doi.org/10.1115/1.4003238

    8. IJF论文

    (1) Modeling rolling contact fatigue lives of composite materials based on the dual beam FIB/SEM technique. International Journal of Fatigue, 2016, 83: 201-208. 

    doi: https://doi.org/10.1016/j.ijfatigue.2015.10.014

    (2) Effect of reinforcements on rolling contact fatigue behaviors of titanium matrix composite (TiB+TiC)/Ti–6Al–4V. International Journal of Fatigue, 2014, 66: 127-137. 

    doi: https://doi.org/10.1016/j.ijfatigue.2014.03.019

    9. Engineering Fracture Mechanics论文

    (1) A practical method for singular integral equations of the second kind. Engineering Fracture Mechanics, 2008, 75(5): 1005-1014. 

    doi: https://doi.org/10.1016/j.engfracmech.2007.04.024

    10. IJF论文

    (1) Numerical simulation of growth pattern of a fluid-filled subsurface crack under moving hertzian loading. International Journal of Fracture, 2007, 142(3): 219. 

    doi: https://doi.org/10.1007/s10704-006-9026-5

    (2) Solution of Multiple Edge Cracks in an Elastic Half Plane. International Journal of Fracture, 2006, 137(1): 121-137. 

    doi: https://doi.org/10.1007/s10704-005-3063-3

    11. Tribology International论文

    (1) A thermoelastic contact model between a sliding ball and a stationary half space distributed with spherical inhomogeneities. Tribology International, 2019, 131: 33-44. 

    doi: https://doi.org/10.1016/j.triboint.2018.10.023

    (2) Contact elasto-plasticity of inhomogeneous materials and a numerical method for estimating matrix yield strength of composites. Tribology International, 2018, 127: 84-95. 

    doi: https://doi.org/10.1016/j.triboint.2018.06.001

    (3) Love's rectangular contact problem revisited: A complete solution. Tribology International, 2016, 103: 331-342. 

    doi: https://doi.org/10.1016/j.triboint.2016.07.011

    (4) Numerical EIM with 3D FFT for the contact with a smooth or rough surface involving complicated and distributed inhomogeneities. Tribology International, 2016, 93: 91-103. 

    doi: https://doi.org/10.1016/j.triboint.2015.09.001

    (5) A mesh differential refinement scheme for solving elastic fields of half-space inclusion problems. Tribology International, 2016, 93: 124-136. 

    doi: https://doi.org/10.1016/j.triboint.2015.09.009

    (6) Elasto-plastic indentation of a half-space by a rigid sphere under normal and torque loading. Tribology International, 2013, 62: 141-148. 

    doi: https://doi.org/10.1016/j.triboint.2013.02.015

    12. JoT论文

    (1) Novel model for partial-slip contact involving a material with inhomogeneity. Journal of Tribology, 2013, 135(4): 041401. 

    doi: https://doi.org/10.1115/1.4024548

    (2) An efficient numerical method with a parallel computational strategy for solving arbitrarily shaped inclusions in elastoplastic contact problems. Journal of Tribology, 2016, 135(3): 031401. 

    doi: https://doi.org/10.1115/1.4023948

    (3) Numerical modeling of distributed inhomogeneities and their effect on rolling contact fatigue life. Journal of Tribology, 2016, 137(1): 011402. 

    doi: https://doi.org/10.1115/1.4028406

    13. Tribology Transactions论文

    (1) A numerical approach for analyzing three-dimensional steady-state rolling contact including creep using a fast semi-analytical method. Tribology Transactions, 2012, 55(4): 446-457. 

    doi: https://doi.org/10.1080/10402004.2012.667518

    14. JoE论文

    (1) On the solution of an elliptical inhomogeneity in plane elasticity by the equivalent inclusion method. Journal of Elasticity, 2014, 114(1): 1-18. 

    doi: https://doi.org/10.1007/s10659-012-9423-0

    (2) Numerical implementation of the equivalent inclusion method for 2D arbitrarily shaped inhomogeneities. Journal of Elasticity, 2015, 118(1): 39-61. 

    doi: https://doi.org/10.1007/s10659-014-9477-2

    15. JAP论文

    (1) Fatigue initiation and propagation behavior in bulk-metallic glasses under a bending load. Journal of Applied Physics, 2010, 108(11): 113512. 

    doi: https://doi.org/10.1063/1.3501102

    16. 其它相关论文代表作

    (1) Semi-analytical solution for steady state heat conduction in a heterogeneous half space with embedded cuboidal inhomogeneity. International Journal of Thermal Sciences, 2019, 139: 326-338. 

    doi: https://doi.org/10.1016/j.ijthermalsci.2019.02.019

    (2) A 3D EHL simulation of CMP: Theoretical framework of modeling. Journal of The Electrochemical Society, 2005, 152(1): G7. 

    doi: https://doi.org/10.1149/1.1823993

    (3) Experiments and FEM simulations of fracture behaviors for ADC12 aluminum alloy under impact load. Metals and Materials International, 2016, 22(6): 1015-1025. 

    doi: https://doi.org/10.1007/s12540-016-6178-3

            17. 部分EI论文

    (1) 非均质材料与位错交互能的数值等效夹杂算法.工程力学, 2021.

    doi: https://doi.org/10.6052/j.issn.1000-4750.2021.03.0229

    (2) 任意形状热夹杂位移场的三角形单元离散算法.力学学报, 2021, 53(1): 205-212. 

    doi: https://doi.org/10.6052/0459-1879-20-240

    (3) 均布激励基本单元解析解的一种记号方法.上海交通大学学报, 2016, 50(8): 1221-1227. 

    doi: https://doi.org/10.16183/j.cnki.jsjtu.2016.08.013

    (4) 二维非均质材料应力场的数值化计算方法. 复合材料学报, 2014, 31(4): 1037-1045. 

   

  • 已授权发明专利

    1. 动静摩擦系数智能测量装置, 授权公告号: CN108444904B, 2021-06-29.

    2. 用于夹持箱体类零部件的多功能夹具, 授权公告号: CN109551404B, 2020-07-31.

    3. 带夹具切换功能的倒模定位装置, 授权公告号: CN109571326B, 2020-06-23.

    4. 实验台用快速压紧装置, 授权公告号: CN108613692B, 2020-06-23.

    5. 配对滚动轴承智能调试装置, 授权公告号: CN108827633B, 2020-03-31.

  • 教育经历Education Background
  • 工作经历Work Experience
  • 研究方向Research Focus
  • 社会兼职Social Affiliations